
Hemophilia Program Unmet Need and Product Opportunity

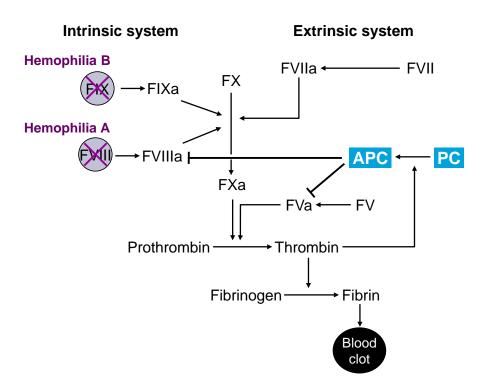
RNAi to treat hemophilia

- Hemophilias are recessive X-linked monogenic bleeding disorders
 - » Hemophilia A defined by loss of function mutations in Factor VIII
 - >40,000 Patients in EU/US
 - » Hemophilia B defined by loss of function mutations in Factor IX
 - ~9,500 Patients in EU/US
- Hemophilia A "inhibitor" patients define segment of highest unmet need and cost*
 - » ~1/3 Patients with severe hemophilia A
 - » >6 Bleeds/patient/year
 - » >5 in-hospital days/patient/year
 - » >\$300,000/patient/year
 - » Very poor quality of life
- Only available therapies: rFVIIa (NovoSeven[™]) and FEIBA
 - » Short half-life, requiring frequent dosing
 - » Not optimally effective

*Gringeri et al., Blood 2003

Protein C Target and ALN-APC Program

Protein C (PC) is genetically defined target


- Activated Protein C (APC) defines key natural anticoagulant pathway
 - » Inactivates factors Va and VIIIa
 - » Attenuates thrombin generation
- Heterozygous PC deficiency associated
 with increased thrombin generation
- Expressed in liver; circulates in plasma

APC Resistance (i.e., Factor V_{Leiden})

• Co-inheritance associated with milder bleeding in hemophilia patients

	No Co-Inheritance	With Co-Inheritance
First bleed age	0.9	1.5
(range)	(0.1– 4.0)	(0.5 – 7.1)
Annual bleeding	6.0	1.8
frequency (range)	(0 – 30)	(0 – 7)

Kurnik et al., Hematologica, 2007

ALN-APC in R2D

- siRNA optimization
- In vivo efficacy in pre-clinical animal models
- IND Filing 2013

