Comparison of the cellular and biochemical properties of ansamycin and non-ansamycin Infinity based Hsp90 inhibitors

Christian C. Fritz, Jie Ge, Nafeeza Hafeez, Bonnie Tillotson, Kris Depew, John Coco, Johan Basuki, Alice Lim, Jon Patterson, James R. Porter, Vito Palombella and Emmanuel Normant Infinity Pharmaceuticals Inc., 780 Memorial Drive, Cambridge, Massachusetts, USA

Abstract

Background: Heat shock protein 90 (Hsp90) has emerged as an important target for the treatment of cancer due to its essential role in several key oncogenic signaling pathways. Several classes of Hsp90 inhibitors have recently advanced into clinical trials including ansamycin derivatives that are semi-synthetic derivatives of the natural product geldanamycin (e.g. 17-AAG. IPI-504, 17-DMAG) or synthetic small molecules (e.g. purine derivatives, isoxazoles, pyrazoles). Ansamycin derivatives are potent Hsp90 inhibitors that demonstrate selective cell growth inhibition toward cancer cells as compared to normal cells. We have determined the biochemical and cellular properties of a group of published Hsp90 inhibitors, including both natural product derived and synthetic compounds.

Materials and methods: The biochemical affinity of inhibitors to Hsp90 was determined using a competition binding assay using radioactively labeled competitor compound and Hsp90 purified from Hela cells. The growth inhibition induced by Hsp90 inhibitors was evaluated in human normal and cancer cells by measuring cell growth in the presence of varying concentrations of compounds using the Alamar Blue assay after 72h of compound addition

Results: The biochemical affinities to purified Hsp90 for the inhibitors tested range from 0.1 to 500 nM. There is an approximate correlation between biochemical affinity and cell growth inhibition of cancer cells with a relative activity ranking of isoxazoles > ansamycins > purines. While ansamycins demonstrate selective growth inhibition of cancer cells compared to normal cells as previously described in the literature, the more potent isoxazole derivative also potently inhibits the growth of some normal cell types. Three of the most potent compounds on cancer cells were also tested in vivo for their ability to induce the degradation of a Hsp90 client protein (mutEGFR) in a xenograft model of human NSCLC. In this model, we observe similar suppression of mutant EGFR and similar induction of cleaved caspase 3 for all three compounds, independent of their biochemical affinity for purified Hengo One possible explanation for this observation is provided by our measurements of off-rates of inhibitors from Hsp90.

Conclusion: The experiments presented above raise the question of whether synthetic Hsp90 inhibitors with high affinity for Hsp90 have lost some of the in vitro therapeutic window between cancer and normal cells that makes Hsp90 inhibitors such attractive candidates for cancer therapeutics.

Compounds studied

Biochemical activity of Hsp90 inhibitors

	K _i (nM)			
Inhibitor	Reducing conditions (+ TCEP)	Non-reducing conditions (- TCEP		
IPI-504	9.0 ± 4.7 (IPI-504)	530 ± 170 (17-AAG)		
IPI-493	3.0 ± 1.8 (17-AG HQ)	21 ± 7.5 (IPI-493)		
NVP-AUY922	0.064 ± 0.058	0.069 ± 0.047		
SNX-2112	1.1±0.41	2.8 ± 2.1		
BIIB-021	13 ± 3.5	26 ± 18		

Figure 1: Binding affinities of ansamycin related and synthetic Hsp90 inhibitors

Affinities were determined using a competitive binding assay with ³H-labeled Hsp90 inhibitors and Hsp90 purified from Hela cells. Affinities were measured both under reducing (+ 2.0 mM TCEP) or non-reducing (- TCEP) conditions. Under non-reducing conditions, IPI-504 is axidized to 17-AAG; under reducing conditions, IPI-493 is converted to the 17-AG hydroquinone. Note that IPI-504 (17-AAG bydroquinone) is ~50 times more notent than 17-AAG

Activity of Hsp90 inhibitors on cancer cells

Figure 2: Growth inhibition of cancer cell lines by ansamycin and non-ansamycin Hsp90 inhibitors

Cells were plated subconfluently according to ATCC conditions, exposed to various compound concentrations, and the GL, (concentration of compound that inhibits cellular growth by 50%) was determined using Alamar Blue after 72h. The median GI50 values are 7 nM (NVP-AUY922), 24 nM (IPI-493), 43 nM (IPI-504), 48 nM (17-AAG), 50 nM (SNX-2112) and 149 nM (BIB-021)

Normal cells proliferate under conditions tested

Activity of Hsp90 inhibitors on normal cells

GI₅₀ values (nM) for normal cells

Cells	Cell type	IPI-504	17-AAG	IP1-493	NVP- AUY922	BIIB-021	SNX- 2112
HMEC	Normal breast epithelial cells	560	550	100	10	3700	290
NHDF	Normal dermal fibroblasts	580	500	100	20	2200	400

Figure 3: Growth inhibition of normal cells by ansamycin and nonansamycin Hsp90 inhibitors

To determine at which plating densities HMEC (Human mammary epithelial cells) and NHDF (Normal human dermal fibroblasts) are able to replicate in tissue culture, freshly thawed cells were plated according to suppliers instruction and the growth was measured using Alamar Blue (Figure 3A). Both cell types show robust growth at 5k and 10k plating densities and these densities were used to determine Gl_{so} values (Figure 3B, results for 108 densities summarized in Figure 3C). Note that the Hsp90 inhibitor that is most potent on cancer cells (NVP-AUY922) also has the biggest effect on normal cells.

DIPI-493 NVP-ALLY92 DIPI-504

In vivo activity of Hsp90 inhibitors

Figure 4: Client protein suppression (mutant EGFR) and cleaved caspase 3 induction by IPI-504, IPI-493 and NVP-AUY922 in vivo Subcutaneous xenografts of the NSCI C cell line H1650 (EGER (del E746-A750) were established in athymic mice and the effect of different Hsp90 inhibitors on EGFR abundance and induction of cleaved caspase 3 were measured over time Compounds were given as a single dose at their published MTD (IPI-493 and IPI 504 at 100 mg/kg. NVP at 50 mg/kg).

Off rates of Hsp90 inhibitors

	Compound	k _{off} (min ⁻¹)	t _{1/2} (min)	K _i (nM)	
	IPI-504	0.021 ± 0.009	33	9.0 ± 4.7	
	IPI-493	0.010 ± 0.003	68	3.0 ± 1.8	
	NVP-AUY922	0.0033 ± 0.0002	212	0.066 ± 0.049	
	BIIB-021	0.14	5	18 ± 12	
	SNX-2112	0.014 ± 0.001	48	2.0 ± 1.6	

Figure 5: Dissociation rates of Hsp90 inhibitors

Hsp90 was pre-bound with individual inhibitors under reducing conditions and the dissociation rates were measured by incubation with an excess of radiolabeled competitor and separation of bound compound through a 96-well spin plate Note that the off-rate of NVP-AUY922 is 3 to 7 times slower than the off-rate of IPI-493 and IPI-504

Summarv

- We find the order of biochemical potency to be NVP-AUY922 >> SNX-2112 ≥ IPI-493 ≥ IPI-504 ≥ BIIB-021 (Fig.1)
- In a panel of cancer cells, the order of activity for cell growth inhibition is NVP-AUY922 > IPI-493 > IPI-504 ≈ SNX-2112 > BIIB-021 with median GI_{so} values of 7, 24, 43, 50 and 149 nM, respectively (Fig. 2)
- A similar order of potency is found in two normal human cell types (NHDF and HMEC) under conditions where these cells proliferate. The average GI_{so} for these two cells are 15 nM (NVP-AUY922), 100 nM (IPI-493), 345 nM (SNX-2112) and 570 nM (IPI-504) (Fig. 3)
- The ability of IPI-504, IPI-493 and NVP-AUY922 to suppress the abundance of a client protein (mutEGFR) and to induce activated caspase 3 was determined in vivo at their published MTDs. No significant differences between these compounds were detected (Fig.4)
- Off-rate measurements show that although NVP-AUY922 has a ~50-fold lower K, the off-rate is only three- to seven-fold slower than that of IPI-493 and IPI-504 (Fig. 5)

