Association between Anaplastic Lymphoma Kinase rearrangements (rALK) and the clinical activity of IPI-504 (retaspimycin hydrochloride), a novel Hsp90 inhibitor, in patients with non-small cell lung cancer (NSCLC)

L. V. Sequist¹, R. Natale², N. Senzer³, R. Martins⁴, R. Lilenbaum⁵, J. Gray⁶, D. Borger¹, A. Lim⁷, G. Paez⁷, D. Grayzel⁷, S. Gettinger⁸

¹Massachusetts General Hospital Cancer Center, Boston, MA; ²Cedars-Sinai Medical Center, Los Angeles, CA; ³Mary Crowley Cancer Research Center, Dallas, TX; ⁴Seattle Cancer Care Alliance, Seattle, WA; ⁵Mount Sinai Comprehensive Cancer Center, Miami Beach, FL; ⁶H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; ⁷Infinity Pharmaceuticals, Inc., Cambridge, MA; ⁸Yale Comprehensive Cancer Center, New Haven, CT

in months

(95% CI)

Background

- Hsp90 is a protein chaperone that maintains proper folding, function, and stability of key oncoproteins.
- IPI-504 is a novel, potent, water-soluble Hsp90 inhibitor.
- The biologic and anti-neoplastic effects of IPI-504 have been demonstrated in multiple pre-clinical models and in phase I studies in several cancers.^{1,2}
- Models suggest mutant EGFR is a stronger Hsp90 client than wild-type EGFR; hence, we designed a phase 2 trial to examine IPI-504 salvage therapy after EGFR TKIs in NSCLC.
- Tumor tissue for molecular analysis was required for all patients; full molecular results are presented here.

1. Ge GD, et al. J Med Chem. 2006;49:4606-4615. 2. Demetri GD, et al. J Clin Oncol 2007 ASCO Annual Meeting Proc. 2007;25:10024.

Study Design

Mutant EGFR Cohort

	<u> </u>	
	If >1 CR, PR, or SD for	
Enroll 10	at least 3 months	Expand to a total
patients	/	of 29 patients

Wild Type EGFR Cohort

Key Eligibility Criteria:

Stage IIIB (effusion) or IV NSCLC

IPI-504

- Failed prior EGFR TKI therapy
- No limit on # of prior therapies
- RECIST-measurable disease Tissue available for EGFR
- mutation analysis (EGFR status not required for study entry)
- No untreated brain metastasis
- Adequate end-organ function

	Sun	Mon	Tue	Wed	Thu	Fri	Sat	
Week 1		**			**			
Week 2		**			**			= IPI-504 dose, IV
Week 3			No 1	reatment)			•

- The starting dose was 400 mg/m² for 75 patients
- 17 months into study, dose was decreased to 225 mg/m² for 19 patients still on therapy, due to toxicity seen in a separate trial of IPI-504.
- One patient started after this change at an initial dose of 225 mg/m².

Molecular Analyses

- Tumor tissue from all patients was assessed for EGFR mutations via direct sequencing of exons 18-21, using standard methods.
- A subset of patients also underwent EGFR, KRAS, and BRAF genotyping analysis with the allele-specific ARMS assay.
- Post-hoc analyses of other molecular markers of interest were performed for all patients with sufficient tissue available, and consisted of:
 - SNaPshot assay adapted to detect key oncogenic mutations in EGFR, KRAS, PIK3CA, BRAF, PTEN, AKT, TP53, NRAS, Beta-catenin, NOTCH, and FLT3
 - Oncomap analysis covering 1155 mutations in 114 cancer genes
 - Fluorescence in-situ hybridization (FISH) break-apart assay for detection of ALK gene rearrangements

All data presented as n (%) unless otherwise specified

Demographics and Baseline Characteristics

		Total*	EGFR Status		KRAS Status		ALK Status		
			(n=68)		(n=38)		(n=15)		
			Wild Type	Mutant	Wild Type	Mutant	Wild Type	Rearranged	
Patients		76	40	28	26	12	12	3	
Age (y)	Median	64.0	63.0	66.0	61.0	65.0	65.5	48.0	
	Range	31-82	31-79	44-82	31-81	52-76	48-76	31-58	
Sex	Female	48 (63)	22 (55)	20 (71)	17 (65)	7 (58)	9 (75)	1 (33)	
	Male	28 (37)	18 (45)	8 (29)	9 (35)	5 (42)	3 (25)	2 (67)	
_	Asian	11 (14)	6 (15)	5 (18)	4 (15)	0	2 (17)	1 (33)	
Race	Black	4 (5)	2 (5)	2 (7)	2 (8)	0	0	0	
	White	61 (80)	32 (80)	21 (75)	20 (77)	12 (100)	10 (83)	2 (67)	
Smoking	Never	34 (45)	13 (33)	17 (61)	13 (50)	0	3 (25)	3 (100)	
	Former	42 (55)	27 (68)	11 (39)	13 (50)	12 (100)	9 (75)	0	
Months	Median	27.5	24.6	37.2	25.7	20.6	28.5	29.7	
since Dx	Range	8-120	8-120	11-108	10-120	11-71	11-71	10-120	
	AdenoCA	59 (78)	31 (78)	23 (82)	21 (81)	10 (83)	11 (92)	3 (100)	
	BAC	4 (5)	2 (5)	2 (7)	0	1 (8)	0	0	
Histology	Squamous	6 (8)	4 (10)	1 (4)	3 (12)	0	1 (8)	0	
	Other	7 (9)	3 (8)	2 (7)	2 (8)	1 (8)	0	O	

	counted in more than	المصمينا ممصما		
atients may be	-counted in more than	one column a	ebendent ubon	molecular analysis
		0 00	-p	

		C	hemothera	oy Treatme	ent History			
			EGFR S (n=			Status 38)		Status =15)
		Total*	Wild Type	Mutant	Wild Type	Mutant	Wild Type	Rearranged
Prior	Median	4.0	4.0	3.0	3.0	3.5	4.0	3.0
treatment regimens	Range	1-11	1-7	1-11	1-6	2-7	2-7	3-5
Best prior	CR	1 (1)	0	1 (4)	1 (4)	0	0	0
response to EGFR TKIs	PR	18 (24)	2 (5)	14 (50)	3 (12)	1 (8)	1 (8)	0
TOTAL HIGHTIS	Median	1.8	1.5	10.5	1.7	1.2	1.9	0.0
	Dance	0.61	0.25	0.61	0.61	0.16	0.16	0.1

_	wost Frequent Adverse Events							
	Any Event	Grade 1 or 2 Event	≥Grade 3 Event					
Fatigue	44 (57.9)	41 (53.9)	6 (7.9)					
Nausea	43 (56.6)	41 (53.9)	6 (7.9)					
Diarrhea	40 (52.6)	37 (48.7)	8 (10.5)					
Vomiting	28 (36.8)	25 (32.9)	6 (7.9)					
Cough	24 (31.6)	24 (31.6)	2 (2.6)					
Urine color abnormal	22 (28.9)	22 (28.9)	0 (0.0)					
Anorexia	19 (25.0)	18 (23.7)	4 (5.3)					
Arthralgia	19 (25.0)	17 (22.4)	2 (2.6)					
Myalgia	19 (25.0)	18 (23.7)	1 (1.3)					
Headache	19 (25.0)	19 (25.0)	0 (0.0)					
Abdominal pain	18 (23.7)	18 (23.7)	1 (1.3)					
Constipation	18 (23.7)	18 (23.7)	2 (2.6)					
Dyspnea	18 (23.7)	15 (19.7)	6 (7.9)					
Back pain	16 (21.1)	16 (21.1)	0 (0.0)					
Infusion site pain	15 (19.7)	15 (19.7)	0 (0.0)					
Dehydration	14 (18.4)	11 (14.5)	3 (3.9)					
Musculoskeletal chest pain	13 (17.1)	11 (14.5)	3 (3.9)					
Pyrexia	12 (15.8)	12 (15.8)	0 (0.0)					
Vision blurred	12 (15.8)	12 (15.8)	0 (0.0)					
Insomnia	12 (15.8)	12 (15.8)	0 (0.0)					
Dizziness	12 (15.8)	12 (15.8)	0 (0.0)					
Liver Function Tests (Maximum post-	baseline grade based o	n laboratory results)						
Alkaline phosphatase	47 (61.8)	43 (56.6)	4 (5.3)					
AST	37 (48.7)	30 (39.5)	7 (9.2)					
ALT	31 (40.8)	26 (34.2)	5 (6.6)					
Total bilirubin	3 (3.9)	3 (3.9)	0 (0.0)					

Three deaths have been reported on study. All were assessed as possibly related to IPI-504

Activity Summary KRAS Status ALK Status 2 (67) Responses **RECIST SD** or better for ≥ 3 mo

Response by EGFR Mutation Status 20 % 10 % Each Bar is an Individual Patient

pathways in vitro. H3122 NSCLC cells (EML4-ALK fusion positive) were incubated with 1 μM IPI-504 for different times and the level of the fusion protein and as well as several downstream signaling proteins were determined by western blotting.

Example of FISH Break-Apart Assay Result for a Patient Positive for ALK Rearrangement

White arrows: wild type allele as one yellow signal Red arrows: ALK rearrangement (separated: one red & green probe signal for the rearranged allele)

Partial Response in a patient with rALK

Change in Size of Target Lesions Over Time for Patients Tested for ALK Rearrangement

Conclusions

rALK Results

- This is the first trial of an Hsp90 inhibitor in molecularly-defined cohorts of patients with advanced NSCLC. IPI-504 is generally well-tolerated and active in NSCLC, with response rates of:
 - •7% in the overall study population
 - •10% in EGFR wild type patients
 - •4% in EGFR mutants with acquired resistance to TKIs
 - •12% in KRAS wild type patients
 - •67% in ALK rearranged patients (2 of 3 patients with PR and the third with 24% disease reduction durable 7.2 months)
- These are the first clinical data to suggest that ALK rearranged NSCLC patients may preferentially respond to Hsp90 inhibition.
- Validation is ongoing in a trial of IPI-504 at Massachusetts General Hospital in patients with NSCLC and an ALK rearrangement.